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Abstract—The Internet of Bio-Nano Things (IoBNT) is a
novel framework that has the potential to enable transformative
applications in healthcare and nano-medicine. It consists of
artificial or natural tiny devices, so-called Bio-Nano Things
(BNTs), that can be placed in the human body to carry out
specific tasks (e.g., sensing) and are connected to the internet.
However, due to their small size their computation capabilities
are limited, which restricts their ability to process data and
make decision directly in the human body. Thus, we address
this issue and propose a novel nano-scale computing architecture
that performs matrix multiplications, which is one of the most
important operations in signal processing and machine learning.
The computation principle is based on diffusion-based propa-
gation between connected compartments and chemical reactions
within some compartments. The weights of the matrix can be
set independently through adjusting the volume of the compart-
ments. We present a stochastic and a dynamical model of the
proposed structure. The stochastic model provides an analytical
solution for the input-output relation in the steady state, assuming
slow reaction rates. The dynamical model provides important
insights into the systems temporal dynamics. Finally, micro- and
mesoscopic simulations verify the proposed approach.

Index Terms—Internet of Bio-Nano Things, Machine Learning,
Molecular Communications, Unconventional Computing

I. INTRODUCTION

Delayed diagnosis and treatment of diseases can lead to
serious consequences for patients and a significant financial
burden on healthcare institutions and companies [2]. For
example, the study in [2] lists waiting for test, misdiagno-
sis and limited access to healthcare as some of the major
causes of diagnosis delay. Thus, improvements on these factors
will largely influence both the individual and general health
state and life expectancy of those parts of the population
needing medical attention. Various studies have shown that
information and communication technologies (ICT) can have
a large positive impact on medical diagnostics and healthcare
monitoring [3], [4]. The Internet of Bio-Nano Things (IoBNT)
provides such a ICT framework, which aims to connect Bio-
Nano Things (BNTs) to the internet [5], [6]. Hence, it paves
the way for a more personalized online supervision of a
person’s health status and faster intervention in the case
of illness. Typically, BNTs are tiny machines that can be
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realized using either nano-technology or synthetic biology
(e.g., engineered bacteria) [7]. They can be placed in the
human body and are capable of carrying out simple specific
tasks, such as sensing the environment, localizing malicious
cells or releasing specific molecules (e.g., drugs). However,
due to their small size the computation capabilities of BNTs
are limited. Nevertheless, there are recent efforts to design
nano-scale systems, that are able to execute complex machine
learning (ML) algorithms. The increased computation power
of BNTs significantly reduces the amount of data that may
need to be exchanged with the cyber-domain, since some
computations and decisions can be already made inside the
human body. This will make the decision making process
in IoBNT applications faster and more reliable, as molecular
communication (MC) [8], the most promising communication
scheme for IoBNT, suffers from low data rates and stochas-
ticity.

One promising approach to realize ML algorithms in the
nano-scale is based on genetic engineering of living cells [9],
[10]. In [9], genetic engineering is utilized to modify a E.
coli bacterium in a way that it imitates a neuro-synapse,
which is called a bactoneuron. The bactoneuron forms a linear
combination of multiple-input chemical concentrations and
distorts this result nonlinearly. The output of the computation
is obtained by measuring the concentration of a fluorescent
protein, which is produced in response to the nonlinearly
distorted signal. The bactoneuron can be interpreted as a single
layer neural network (NN), which was verified experimentally
using various computing tasks. However, the implementation
of this approach is quite complex, since it requires genetic
engineering and living cells. To overcome the issue of en-
gineering a synthetic circuit from scratch, the method pre-
sented in [10] exploits the fact that living cells naturally have
gene-regulation networks, which regulate different processes
within the cell. The idea is to identify sub-networks within
these existing gene-regulation networks, that have the same
architecture as the NN to be realized. The weights of this
network are set by adjusting the gene expression rates through
altering environmental parameters, such as the ambient tem-
perature. While this method requires lower effort in terms
of biotechnology, it is highly complex to generate arbitrary
NNs, since the individual network weights cannot be chosen
independently of each other. Another chemical computation
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approach for the realization of ML algorithms is proposed
in [11], which does not rely on living cells. Microfluidic
channels and chemical reactions are utilized to realize logic
gates (e.g., AND gate), which form the basis of conventional
computers. Compared to [9], [10], the implementation of this
approach is easier, but for the realization of NNs a very
large number of logic gates is required. This may limit the
ability to downscale it to the nano-domain. Finally, there is
the concept of chemical reaction networks (CRNs), which
conceptually lies between the aforementioned approaches [12],
[13]: A cascade of chemical reactions is engineered to perform
an intended operation (i.e., neural network inference) within
a given volume. The advantage of this approach is, that
compared to [9] it provides a higher degree of control over
the involved processes, while directly carrying out a matrix
multiplication as opposed to [11]. However, due to the large
number of required reactions, the concept might become
complex for larger structures. In summary, the main limitations
for the implementation of ML algorithms at nano-scale are
the implementation complexity (cf. [9], [10]) and the lack in
downscaling to the nano-domain (cf. [11]).

In this work, we present a novel nano-scale computing
architecture that is capable of performing matrix multiplica-
tions, which is the basic operation for the realization of a
single layer NN2. The proposed architecture overcomes the
limitations of the aforementioned approaches, since it does
not require living cells and enables an efficient implementation
at the nano-domain. The structure consists of connected com-
partments and the computation principle is based on diffusion-
based propagation between these compartments and chemical
reactions within some compartments. The weights of the
matrix can be set independently by adjusting the volume of
the compartments. It is important to note that the proposed
computing architecture requires no external stimulus. The
main contributions of this work can be summarized as follows
(cf. Fig. 1):

1) We present a novel nano-scale computing architecture
that performs matrix multiplications, which builds the
basis for many signal processing and ML algorithms.

2) We provide a stochastic model, which gives an analytical
solution for the input-output relation in the steady state,
assuming slow reaction rates. This model allows to
define a noise model and a naive design algorithm for the
compartment volumes given arbitrary matrix weights.

3) We provide a dynamical model, which fully charac-
terizes the dynamic behavior of the proposed structure
using systems of coupled ordinary differential equations.
Compared to the stochastic model it has no constraints
(e.g., slow reaction) and enables the derivation of im-
portant system insights, such as the computation speed.
This model leads to an advanced design algorithm for
the compartment volumes.

4) We verify the functionality of the presented structure
and the corresponding models using a microscopic-
mesoscopic hybrid simulation.

2The realization of multi-layer NNs is out of scope of this work and will
be investigated in a future work.
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Fig. 1. Overview of the main contributions

The remainder of this work is organized as follows: Sec. II
introduces the proposed structure and the used terminology
and notation. A stochastic model is presented in Sec. III, which
gives first insights into the working principle of the structure.
Moreover, a naive design algorithm for the compartment
volumes is presented. Sec. IV presents a dynamical model and
provides an estimate of the computation speed. In Sec. V an
advanced design algorithm for the compartments volumes is
derived. We verify our models and the proposed models using
a microscopic-mesoscopic hybrid simulation in Sec. VI and
provide a conclusion and outlook in Sec. VII.

II. TERMINOLOGY AND NOTATION OF THE PROPOSED
ARCHITECTURE

In this section, we introduce the proposed structure and
notation for its description.

A. Description of the Structure

To introduce the nomenclature used for different parts of
the structure, we consider the sketch of a realization for a
2 × 2-matrix multiplication in Fig. 2. The circles indicate
compartments, which are reservoirs with well defined volume
and content. The top row of compartments are called inlet-
compartments (or inlets), the second row compartments are
called intermediate compartments (or intermediates) and the
bottom row are called outlet compartments (or outlets). The
connecting lines indicate channels, which link compartments
to one another. Through these channels molecules can spread
via diffusion. We index inlets with i ∈ I , intermediates with
(i, j) and outlets with j ∈ J . The variables written in sanserif
indicate the molecule types, e.g., A corresponds to molecules
of type A. The arrows to the left and right of the structure
indicate the type of molecule, that is able to spread in this
direction. The molecule type in a compartment is indicated
by the same variable, i.e., in the inlets only A molecules can
be found, in the intermediates A-type molecules are converted
to B-type molecules and in the outlets only B-type molecules
can be found. It is important to note that B ∈ {B+,B−}, i.e.,
A can be converted into two different types of B molecules,
where B+ is used to realize positive and B− to realize negative
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numbers (see Sec. II-C). Furthermore, we distinguish signal-
ing molecules and auxiliary molecules. Signaling molecules
are A and B-type molecules, i.e., molecules, that are able to
propagate across the structure and change over time. On the
other hand auxiliary molecules are molecules, that are neither
input nor output of the reaction, but might affect parameters
of the process, such as the reaction rate. They are assumed to
have a (almost) constant concentration over time. In this work
we only consider two types of auxiliary molecules, namely
C+ and C−. Their properties are

• Constant over time
• Only present in the intermediates and unable to diffuse

anywhere else
• Exactly one of them is found in each intermediate,

depending on the intended sign of the respective weight
(see Sec. II-C)

B. Notation for States

Throughout this work, we will use state-space models to
keep track of the movement of all molecules within the
structure. These models can either be formulated in terms of
concentrations or number of molecules, with each of the two
being a valid representation of the state of a compartment. In
this subsection we introduce the respective notation. We use V
to indicate the volumes of compartments. By convention, inlet
compartments have the index ”in, i” (i.e., Vin,i is the volume
of the i-th inlet compartment), intermediates the index ”i, j”
(i.e., the intermediate connecting i-th inlet to j-th outlet has
volume Vi,j) and outlets the index ”out, j” (i.e., Vout,j is the
volume of the j-th outlet compartment). This notation also
holds for the number of molecules N and concentration of
molecules C, which are linked by

N = CV. (1)

However, for N and C, in addition to indicate the
compartment, we also have to specify the molecule
type, which is done using a superscript. For example,
NA

in,1 = CA
in,1Vin,1 describes the relationship between the

number and concentration of A-type molecules in the first
inlet compartment. Note, that all numbers of molecules and
concentrations are in general functions of time. We will
however omit the time dependence for the sake of readability.
The initial and final concentration in a compartment, on
the other hand does not depend on time. It is marked by
additional superscripts ”init” or ”fin”, respectively (i.e.,
NA,init

in,1 is the number of molecules initially placed in the
first inlet compartment and CB,fin

out,2 is the concentration of B
molecules in the second outlet). Finally, we use lower case
variables to indicate random variables (i.e., cB,finout,2). If the
random variable is normally distributed, the corresponding
upper case variable can be interpreted as its expected value
(i.e., CB,fin

out,2 is the expected value of cB,finout,2).

C. Notation for Transport Processes

The propagation of molecules through the structure is driven
by two major physical processes, with the first being diffusion

(transport between compartments) and the second one reaction
(transfer between species). Diffusion describes the passive
process of distribution of molecules between compartments
due to Brownian motion. The property of the propagation
medium is thereby reflected by the diffusion coefficient D. As
will be shown later, further parameters influencing this process
are the volumes of the compartments, the channel cross section
area S and length d. Reactions, on the other hand, refer to
the conversion of molecules from one type to another. The
reactions taking place in our structure are

A+ C+ → B+, (2)

A+ C− → B−, (3)

and
B+ + B− → ∗. (4)

Note, that since each intermediate contains exactly one of the
two molecule types C+ and C−, only one of the two reactions
(2) and (3) takes place in these compartments. The reaction (4)
takes place, if an outlet receives molecules of both B-molecule
types (i.e., if the respective outlet is connected to at least one
intermediate of each reaction type (2) and (3)). The ∗ indicates
one or multiple species, which we are not interested in and
therefore do not count their respective number of molecules. It
is important, that this species does not react with any signaling
molecule and furthermore does not impact the propagation of
signaling molecules.

We assume, that all three above equations happen at the
same rate. For the speed of a reaction the parameters r (second
order reaction) and k (first order reaction) are used. For
both reaction and diffusion, we will define respective fluxes.
Since diffusive fluxes leave one compartment and go into
another one, we will adopt the index ”source → sink” (i.e.,
FA
in→(i,j) is the flux of A-type molecules going from inlet i to

intermediate (i, j)). Since diffusive fluxes always spread either
between inlet and intermediate or intermediate and outlet, the
index of the inlet/outlet compartment is obvious from (i, j)
and is thereforee neglected (e.g., we do not write FA

(in,i)→(i,j),
but FA

in→(i,j)). We use Fre to indicate reactive fluxes.

III. STOCHASTIC MODEL

In this section, we derive the relation between input and
output concentration of the proposed structure and show, that
it can be formulated as a matrix multiplication. We start by an
intuitive physical explanation. Then, we employ a stochastic
modeling approach to formulate the intuitive explanation in
mathematical terms.

A. Working Principle – Intuitive Explanation

In this section, we provide an intuitive description of the
working principle of the proposed structure. We start our
discussion by just considering the first inlet and the connected
intermediates (1, 1) and (1, 2) as shown in Fig. 2 and extend
this to more inlets later. At the beginning of the computation, a
certain number of A-type molecules NA

in,1 is placed in the inlet,
which corresponds to the concentration CA

in,1 = NA
in,1/Vin,1.
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Fig. 2. System architecture of a 2×2 matrix multiplication. Inlet, intermediate,
and outlet compartments are shown at the top, middle, and bottom.

Assuming that the influence of the reactions in the intermedi-
ates can be neglected for now, this initial number of molecules
will diffuse to the intermediates, until all three compartments
have the same concentration, i.e., NA

in,1/(Vin,1 + V1,1 + V1,2).
After the three compartments have reached the equilibrium, we
now consider the reaction in the intermediates. If this reaction
is slow compared to the diffusion, we can assume that also
in the presence of the reaction, the inlet and its connected
intermediates have the same concentration. However, due to
the conversion of A-type molecules in the intermediates the
overall number of molecules in the joint volume of inlet and
intermediate compartments will decay over time. This process
continues until all A-type molecules initially placed in the inlet
have been converted by reaction in the intermediates.

Next, we discuss the probability that an A-type molecule is
converted in one specific intermediate using the following ex-
ample: If the volume of the intermediate (1, 1) is twice as large
as the volume of the intermediate (1, 2), i.e., V1,1 = 2V1,2,
the probability that a molecule is in (1, 1) is twice than in
(1, 2). The reason for that is that although the concentrations
are the same, larger volumes have a larger number of expected
molecules. Thus, the probability of a molecule being converted
in (1, 1) is twice the probability of being converted in (1, 2),
which results in the probabilities 2/3 and 1/3, respectively.
Once a molecule has been converted, it ends up in the
corresponding outlet with probability one, e.g., all molecules
converted in (1, 2) end up in outlet 2 (cf. Fig. 1). It is important
to note that the aforementioned fraction of molecules can be
interpreted as the fraction of molecules placed in the first inlet
ending up in either outlet 1 or 2, e.g., the fraction of molecules
ending up in outlet 2 is given by 1/3. In other words, the num-
ber of molecules in a certain outlet corresponds to the number
of molecules in the inlet times a certain weight (fraction) that
is determined by the intermediate volumes. However, since
the fractions are always less than or equal to one, we need
some additional design parameters to realize arbitrary weights.
So far, we have only considered intermediate volumes for the
design. In order to realize arbitrary weights the appropriate
choice of the inlet and outlet volumes is also crucial. Let’s
assume that we would like to realize the weights 2 and 1.

In this case the inlet volume must be chosen three times the
outlet volume, which will be justified below. According to the
discussion above, from Nin,1 = Cin,1Vin,1 molecules initially
placed in the first inlet, 2/3 will end up in intermediate (1, 1)
and further in outlet 1, which results in the outlet concentration
2/3Cin,1Vin,1/Vout,1. Since Vin,1/Vout,1 = 3, we obtain the
desired weight of 2. Similar considerations can be made for
outlet 2, resulting in the weight 1. From this example we can
infer the following connection between intended weights and
volumes of the structure:

• The ratio of the weights defines the ratio of the interme-
diate volumes (or vice versa)

• Since the ratio of the weights to one another was set in
the previous step, they can differ from the intended value
at most by a multiplicative factor which can be adjusted
by setting the ratio of inlet to outlet volume appropriately.

A more detailed mathematical description of these observa-
tions will be presented in (20). As mentioned at the beginning
of the section, the description above only considers the effect
of one inlet on the corresponding outlets. However, the total
concentration in the outlets can be obtained through the
superposition of the effects of all inlets.

Finally, we provide an explanation on how to realize neg-
ative weights. Therefore, we use the molecules C+ and C−

and B+ and B−, respectively. If an intermediate is filled with
C+ molecules it generates B+ molecules (cf. (2)) and the
same holds for C− and B− molecules (cf. (3)). Thus, the sign
of the molecules coming from one intermediate compartment
can be controlled by choosing the respective C. Since the B
molecules react in the outlets according to (4), which stops
only if one of the two species is used up entirely, only the
surplus of either of the two species remains. Thus, if at the
end only B+ molecules remain, their concentration encodes a
positive number, otherwise the remaining concentration of the
B− molecules encodes a negative number.

B. Mathematical Explanation
In this subsection, based on the discussion before, we will

describe the working principle of the structure mathematically.
The overall goal is to multiply an input vector C in (which is
encoded in the A-type molecules concentrations of the inlets)
by a matrix M to obtain an output vector Cout (encoded in
the B-type concentration in the outlet compartments), i.e.,

Cout = MC in. (5)

This is achieved by choosing the content and volumes of
the structure appropriately. Please note that for the sake
of readability, we will use the term ”B-molecules” instead
of ”B−-” and ”B+-molecules”, in the following. The same
convention is used for the C-type molecules. Where necessary,
we will introduce the sign si,j to enable a distinction.
For the following derivations, we make two assumptions:

• The reaction rate is small (compared to the rate of
diffusion), but not zero. Moreover, please note that when
we state diffusion is fast or reaction is slow, it is always
with respect to the other process.

• We neglect the first time interval, in which diffusion
equilibrates the concentration of an inlet and its connected
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intermediates. It will be short compared to the time the
reaction takes since we assumed that diffusion is much
faster than reaction

The initial signal molecule concentrations of all non-inlet
compartment is assumed to be zero at the beginning of a
computation. Note that C molecules are not considered as
signaling molecules and their concentration is set to a fixed
concentration CC+,init

i,j and CC−,init
i,j depending on the sign. All

intermediates with the same sign have the same concentration
of C-type molecules.
We assume that the initial concentrations in the inlets are
set instantaneously at the beginning of a computation. Based
on the above assumption, the concentration between one
inlet and its J intermediates is equalized after a short time
(which we neglect). This can be mathematically written as
CA

in,k = CA
i,j |i=k∀j ∈ J . If we assume a first order forward

reaction in the intermediate compartments (which is valid if
the concentration of C+ and C− in (3) and (4) is sufficiently
large, as will be shown later) the concentration of A-molecules
CA

i,j(t) and number of B-molecules NB
i,j(t) generated therein

are related by
dNB

i,j

dt
= Vi,jkC

A
i,j , (6)

Integrating this equation with respect to time gives the overall
number of B molecules generated in intermediate (i, j). Since,
due to the unidirectional transport from intermediate to outlet,
each of these molecules will end up in outlet j, we can
formulate the number of molecules in the j-th outlet only due
to the effect of the i = k-th inlet (k ∈ [1, I]) as

NB,fin
out,j |i=k =

∫ ∞

0

Vi,jkC
A
i,jdt (7)

Considering that all molecules initially placed in an inlet
i = k will be converted in one intermediate as time approaches
infinity, we obtain

NA,init
in,k =

∫ ∞

t=0

J∑
j=1

FA
in→(k,j)dt (8)

Combining (7) and (8) we get the fraction of molecules from
i = k-th inlet ending up in j-th outlet as

NB,fin
out,j |i=k

NA,init
in,k

=

∫∞
t=0

FB
(k,j)→outdt∫∞

t=0

∑J
j=1 F

A
in→(k,j)dt

=
Vk,j

∫∞
t=0

kCA
k,jdt∑J

j=1 Vk,j

∫∞
t=0

kCA
k,jdt

. (9)

As mentioned above, the concentrations of all intermediates
connected to the same inlet have the same concentration.
Therefore, the integrals in (9) yield the same result and it
simplifies to

χk,j =
NB,fin

out,j |i=k

NA,init
in,k

=
Vk,j∑J
j=1 Vk,j

. (10)

We can interpret χk,j as the probability of a molecule initially
placed in inlet k ending up in outlet j. Consequently, if initially
NA,init

in,i = Vin,iC
A,init
in,i were placed in the k-th inlet, the final

number of molecules in the j-th outlet will be distributed
according to

nB,fin
out,j

∣∣
i=k
∼ B

(
Vin,kC

A,init
in,k , χk,j

)
, (11)

where B (n, p) denotes the Binomial distribution with n the
number of independent trials and p the probability of success.
Note that we used a lower case variable to indicate a random
variable. Given that the number of molecules is large we can
use the De Moivre–Laplace theorem [14] to obtain

B
(
Vin,kC

A, χk,j

)
≈

N
(
Vin,kC

A,init
in,k χk,j , Vin,kC

A,init
in,k χk,j (1− χk,j)

)
. (12)

Thereby, N
(
µ, σ2

)
indicates the normal distribution with

expected value µ and standard deviation σ. Since the inlets
are independent of each other, the overall distribution of the
number of molecules in the j-th outlet follows as [14]

nB,fin
out,j =

I∑
k=1

nB,fin
out,j

∣∣
i=k
∼ N

(
µj , σ

2
j

)
, (13)

with µj =
∑I

k=1 sk,jVin,kC
A,init
in,k χk,j , σ2

j =∑I
k=1 Vin,kC

A,init
in,k χk,j(1−χk,j) and sk,j ∈ {−1, 1} indicating

the sign of the (k, j)-th intermediate. The distribution of the
concentration can be obtained by dividing mean and standard
deviation by the outlet volume Vout,1 = Vout,2 = V resulting
in

cB,finout,j ∼ N
(
µj , σ

2
j

)
, (14)

with µj =
µj

V and σ2
j =

σ2
j

V 2 .

C. Interpretation of the Stochastic Model

Reconsidering the mean of the probability distribution
in (14) we can write

CB,fin
out,j =

1

V

I∑
k=1

sk,jχk,jVin,kC
A,init
in,k =

I∑
k=1

wk,jC
A,init
in,k .

(15)
Collecting all CB,fin

out,j in the vector Cout (dimension J × 1)
and all CA,init

in,i in the vector C in (dimension I × 1), we can
rewrite (15) in matrix-vector notation

Cout = WC in, (16)

with the matrix W (dimension J × I) having the following
entry in the j-th row and k-th column Wj,k = wk,j ; please
note here the flip of the index positions. Thus, we have proven
that the proposed structure is capable of realizing a matrix
multiplication, as we demanded in (5). In the next step, we
show that it is possible to set W to any arbitrary desired
matrix M . Thus, we demand M = W or equivalently

Mj,i = wi,j =
si,jVi,jVin,i

V
∑I

i=1 Vi,j

, (17)

with the desired weight Mj,i that depends on multiple volumes
in the structure. Note that this equation gives Mj,i as a function
of the volumes. When we want to design a structure, however,
we want the opposite, namely the volumes as a function of the
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weights to be realized. To obtain this relationship, such that
(17) holds for all Mj,i, we consider a simple example of a
2× 2 matrix and demand that[

M1,1 M1,2

M2,1 M2,2

]
=

[
s1,1V1,1Vin,1

(V1,1+V1,2)V
s2,1V2,1Vin,2

(V2,1+V2,2)V
s1,2V1,2Vin,1

(V1,1+V1,2)V
s2,2V2,2Vin,2

(V2,1+V2,2)V

]
, (18)

with arbitrary real valued numbers Mj,i. Obviously, this prob-
lem is solved by setting Vin,1 = |M1,1| + |M2,1|, Vin,2 =
|M1,2|+ |M2,2|, V1,1 = |M1,1|, V1,2 = |M2,1|, V2,1 = |M1,2|,
V2,2 = |M2,2| and V = 1, which results in

M =

[
M1,1(|M1,1|+|M2,1|)

|M1,1|+|M2,1|
M1,2(|M1,2|+|M2,2|)

|M1,2|+|M2,2|
M2,1(|M1,1|+|M2,1|)

|M1,1|+|M2,1|
M2,2(|M1,2|+|M2,2|)

|M1,2|+|M2,2|

]
. (19)

Please note that Mj,i is defined as Mj,i = sgn(Mj,i)|Mj,i|,
and sgn(Mj,i) is considered through the choice of
C ∈ {C+, C−}. From (19) we notice that there are infinitely
many solutions realizing the same matrix. If for example all
inlet volumes (Vin,1 and Vin,2) and outlet volumes V are
doubled, we obtain the same result. Thus, we conclude that
there are infinitely many solutions to the problem, which are
equally good as long as diffusion is much faster than reaction
and we do not want to impose other constraints on our solution
(i.e., constraints on the largest allowed volume, computation
duration etc.).

The line of argumentation presented above for the 2×2 ma-
trix extends to higher matrix dimensions in a straightforward
way: Assuming a desired matrix M with dimension J×I , we
always find at least one realization (again, there are infinitely
many) by choosing the volumes as follows

Vin,i =
∑J

k=1
|Mk,i| (20a)

Vi,j = |Mj,i| (20b)
si,j = sign(Mj,i) (20c)
V = 1, (20d)

where si,j corresponds to the content of the (i, j)-intermediate
(i.e., C+ or C−). We will refer to this way of determining
the volumes of the structure as Naive Design Algorithm in
the remaining work, since it was calculated using the naive
assumption, that diffusion is much faster than reaction. Please
note that the volumes are just a function of the weights and
no knowledge about the channel shape, the speed of reaction,
or the diffusion coefficient is required. The physical reason
for this behavior of the system will be shown in Sec. V-A.
Finally, let’s revisit the standard deviation of the number of
outlet molecules given in (13), which is a measure for the
uncertainty of the output and reads as

σj =

√√√√ 1

V 2

I∑
k=1

χk,j(1− χk,j)Vin,kC
A,init
in,k . (21)

From the definition of the standard deviation we can observe
two interesting properties: Firstly, it does not depend on the
sign (i.e., auxiliary molecules) of the compartment and sec-
ondly, we notice that the standard deviation is also a function
of the concentration, i.e., a larger initial input concentration

Fig. 3. Diffusion through two interconnected compartments.

leads to larger standard deviation of the computation. Finally, it
should be noted that V affects the variance inversely quadratic.
As we have shown previously, the realized matrix is defined
by χk,j and Vin,k

V . Hence, for the same matrix, we can change
the variance of the computation by choosing Vin,k and V in
the same ratio, but with larger absolute value to reduce the
variance/standard deviation of the computation.

IV. DYNAMIC MODEL

In the previous section, we utilized the assumption, that
diffusion is much faster than the reactions taking place in the
intermediate compartments. However, in a practical setup, this
condition may be violated and, thus, more detailed models to
analyze the effect of this violation are needed. Therefore, in
this section, we derive a dynamical model of the proposed
structure allowing for a detailed model of the temporal evolu-
tion of the system states.

A. Fundamentals

In order to model the structure depicted in Fig. 2, we
utilize a set of differential equations, commonly referred to
as compartment models. These differential equations have
to account for all transfers of molecules in the structure.
The driving forces of these transfers are diffusion between
compartments and reaction within compartments.

1) Diffusion: The most important quantity to model the
diffusion between compartments is the diffusive flux-density

f = −D∇C(r, t), (22)

with D the diffusion coefficient and C(r, t) the concentration
at location r and time t. Let us now consider two inter-
connected compartments (see Fig. 3). We assume that the
concentration gradient within one compartment is negligible,
and, thus the concentration within one compartment is inde-
pendent on the location within the compartment. We denote
the concentration in the left compartment C1 and in the right
compartment C2. We approximate f in the channel as

f = D
∂C(r, t)

∂x
ex ≈ D

C1 − C2

L
ex, (23)
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Fig. 4. Types of diffusive coupling: a) bidirectional (regular) diffusion, and
b) unidirectional diffusion.

where ex denotes the unit vector in x-direction. If we assume
homogeneous distribution of the concentration in the channel
in y and z-direction, we can further write

Fdif = D

∫
S

fdS ≈ D

∫
S

C1 − C2

L
exdS ≈

DS(C1 − C2)

L
.

(24)
The flux Fdif describes the molecules exchanged between the
two compartments. Its direction depends on the concentration-
difference in the compartments, where it flows always from the
compartment with higher concentration to the one with lower
concentration. How strongly the flux effects the concentration
in one compartment depends on the volume of the compart-
ment, which can be described by

dC

dt
=

dN
V

dt
=

Fdif

V
, (25)

where the relations C = N
V and Fdif = dN

dt were used. For
the case of two coupled compartments depicted in Fig. 3, the
changes in concentration can be expressed as

dC1

dt
=

DS

LV1
(C2 − C1) (26a)

dC2

dt
=

DS

LV2
(C1 − C2) . (26b)

If we assume that flux can only occur from compartment 1
to compartment 2 (see Fig. 4b)), we could ignore the effect
of C2 in (26), resulting in

dC1

dt
= −DS

LV1
C1 (27a)

dC2

dt
=

DS

LV2
C1. (27b)

This way of describing systems of connected compartments
extends to multiple interconnected compartments in a straight-
forward manner. For example, for three interconnected com-
partments (see Fig. 5) the fluxes into each compartment are
summed up and we obtain

Fig. 5. Three interconnected compartments.

Fig. 6. Illustration of a) second order, and b) first order reaction.

dC1

dt
=

DS

LV1
(−2C1 + C2 + C3) (28a)

dC2

dt
=

DS

LV2
(C1 − C2) (28b)

dC3

dt
=

DS

LV3
(C1 − C3) . (28c)

2) Reactions: Similarly to diffusion, we can also model
reactions by fluxes associated with them. Practically, these
fluxes however do not leave the compartment, but refer to the
conversion of molecules from one type to another (see Fig. 6).
In a compartment in which the chemical reaction D+H→ E
takes place, this can be modeled as

Fre = FD→E = FH→E = V rCHCD, (29)

with r the reaction coefficient of the second order reaction
(unit m3 s−1) and the volume of the compartment under
consideration V . For a compartment, in which only reactions
(no diffusive fluxes) take place, we can write

dCD

dt
= −Fre

V
= −rCDCH (30a)

dCH

dt
= −Fre

V
= −rCDCH (30b)

dCE

dt
=

Fre

V
= rCDCH (30c)

If we assume CH ≫ CD we can consider CH = ĈH = const.
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This can be intuitively understood from the following example:
Consider the case, where we have 10000 H, but only 10 D
molecules. The reaction will stop, when all 10 D have been
used up. Since each D reacts with one H after the reaction
9990 H molecules remain. Thus, the number of H molecules
has only changed by 0.01% during the entire reaction, which
in many cases is negligible. Using this assumption, we convert
the nonlinear system of differential equation in (30) into the
following linear system of differential equations

dCD

dt
= −rĈHCD = −kCD (31a)

dCE

dt
= rĈHCD = kCD, (31b)

where k = rĈ is the respective reaction coefficient of the
first order reaction. Reconsidering the structure in Fig. 2, we
notice that both systems of equations given in (30) and (31)
are required. For the reaction in the intermediate defined in
(2) and (3), we are in full control of how much C molecules
we put into the compartment and, thus, we can always fulfill
the condition CH ≫ CD. Hence, for (2) and (3) the model
given in (31) is appropriate. Furthermore, we ensure that
k = r+ĈC+

= r−ĈC−
holds. This means that if the reactions

(2) and (3) happen at different rates r+ and r−, we correct the
overall reaction rate k by adapting ĈC+

and ĈC−
, respectively.

On the other hand, since both B+ and B− are signaling
molecules, we cannot assume that one concentration is larger
than the other and, thus, (30) is required to model the reaction
in (4).

B. Model of the Computing Structure

Now, we will apply the models derived in the previous
subsection to the proposed structure depicted in Fig. 2.

1) States and Initial Conditions for the System of Differ-
ential Equations: It is important to note that the size of the
system of differential equations grows rapidly with the size of
the matrix to be realized. In particular, we need I states for
the inlet concentrations of A-type molecules. Furthermore, the
I×J intermediates can hold two types of signaling molecules,
namely A and B+ or B−. Finally, the J outlet compartments
will hold a number of B+ and B− molecules. However, we will
show that only J state variables are required to fully describe
the outlet. Consequently, the number Neq of linear differential
equations needed to describe a structure with I inlets and J
outlets is given by

Neq = I + 2× I × J + J, (32)

which is also the required number of initial conditions. As dis-
cussed in Secs. II and III, we assume that initially only the I
inlet concentrations are non-zero. Those initial concentrations
correspond to the inputs of the computation.

2) Model: Here we derive the differential equations for the
structure. We start with the inlet, where Fig. 5 shows an inlet
compartment connected to two intermediate compartments and
its behavior is described by (28a). In general, every inlet

Fig. 7. Illustration of the fluxes at an intermediate compartment.

Fig. 8. Illustration of transport and reactions for an outlet compartment.

is connected to J outlets. The generalization of (28a) to J
compartments is straightforward and reads as

dCA
in,i

dt
=

DS

LVi

−JCA
in,i +

J∑
j=1

CA
i,j

 . (33)

Next, we derive the differential equation for the intermediate
compartments. Each intermediate is connected to exactly one
inlet and one outlet, as depicted in Fig. 7. The diffusive flux
of A-type molecules into the intermediate is DS

L

(
CA

in,i − CA
i,j

)
and the reactive flux is −kVi,jC

A
i,j . Consequently, we get the

differential equation

dCA
i,j

dt
=

DS

LVi,j

(
−CA

i,j + CA
in,i

)
− kCA

i,j . (34)

To complete the model of the intermediate compartment, we
derive the differential equation of the B-type molecules in
the intermediate. Since we assume that the reactions (2)
and (3) have the same reaction constant k, we need not make a
distinction between positive and negative weights with respect
to the dynamics of the process from Fig. 7. We notice that the
influx into the B-molecule storage is kVi,jC

A
i,j and the efflux

is DS
L CB

i,j . Consequently, the second equation describing the
intermediate compartment is given by

dCB
i,j

dt
= kCA

i,j −
DS

LVi,j
CB

i,j . (35)

Finally, we model the outlet compartment, which can hold two
types of molecules, namely B+ and B−. Thus, we need two
variables CB+

out,j and CB−

out,j . In Fig. 8 all influences on an outlet
compartment are depicted. The influx into the outlet comes
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from all intermediates connected to it. The reactive efflux
is given by rCB+

out,jC
B−

out,j , which results in the differential
equations for the outlet compartment

dCB+

out,j

dt
= −rCB+

out,jC
B−

out,j +
∑
i+

DS

LV
CB+

i,j (36a)

dCB−

out,j

dt
= −rCB+

out,jC
B−

out,j +
∑
i−

DS

LV
CB−

i,j , (36b)

where the index i+ and i− indicates the summation over all
intermediates with positive and negative weights, respectively.
It is important to note that (36) is a nonlinear system of
differential equations due to the first terms on the right hand
side. However, since we are only interested in the difference
in the concentrations of B+ and B− molecules, we define
C∆B

out,j = CB+

out,j − CB+

out,j and obtain a linear system

dC∆B
out,j

dt
=
∑
i+

DS

LV
CB+

i,j −
∑
i−

DS

LV
CB−

i,j , (37)

which can be rewritten using si,j ∈ {−1, 1} as

dC∆B
out,j

dt
=

I∑
i=1

si,j
DS

LV
CB

i,j , (38)

where CB
i,j stands for the respective type of B molecules

depending on the sign of si,j , i.e., B+ for si,j = +1 and
B− for si,j = −1. Please note that by considering only the
concentration difference the number of equations required to
describe the outlet is reduced from 2J to J .

For the sake of clarity, please find below a summary of all
equations derived above, which completely characterize the
behavior of the proposed structure

dCA
in,i

dt
=

SD

LVi

−JCA
in,i(t) +

J∑
j=1

CA
i,j

 (39a)

dCA
i,j

dt
=

SD

LVi,j

(
−CA

i,j + CA
in,i

)
− kCA

i,j (39b)

dCB
i,j

dt
= kCA

i,j −
DS

LVi,j
CB

i,j (39c)

dC∆B
out,j

dt
=

I∑
i=1

si,j
DS

LV
CB

i,j . (39d)

C. Approximate Time Domain Solution

To get a better understanding of the temporal evolution of
all states in the dynamical system given in (39), we present
an approximate time domain solution. The derived solution
provides insights on the time it takes for a computation
to be finished. Furthermore, the influence of the individual
parameters (e.g., D, k, etc.) can be deduced.

1) Derivation: The derivation of the approximate solution
is based on the same two assumptions we already used for the
stochastic model, which are:

• The reaction rate is small (compared to the rate of
diffusion), but not zero. Moreover, please note that when
we state diffusion is fast or reaction is slow, it is always
with respect to the other process.

• We neglect the first time interval, in which diffusion
equilibrates the concentration of an inlet and its connected
intermediates. It will be short compared to the time the
reaction takes since we assumed that diffusion is much
faster than reaction

Please note that we also used these assumptions in Sec.
III. Similarly we assume that an inlet and its connected
intermediate have the same concentration. For the following
derivations, we employ a virtual compartment that summarizes
one inlet and its connected intermediates, which we refer to
as ”joint compartment” (see Fig. 9). The volume of the joint
compartment is the sum of the volumes of the individual com-
partments i.e., Vtot,i = Vin,i+

∑
j Vi,j and the concentration of

A-type molecules within the joint compartment is equal3, i.e.,
Ĉi = CA

in,i = CA
i,j . Since at the beginning of the computation

only the inlets contain molecules, which evenly distribute
among inlet and intermediates (and consequently the joint
compartment), we can compute the initial joint compartment
concentration as

Ĉ init
i =

Vin,i

Vtot,i
CA,init

in,i =
Vin,i

Vin,i +
∑

j Vi,j
CA,init

in,i = αiC
A,init
in,i .

(40)
Next, we accumulate all reactive effluxes out of the joint
compartment, which results in a linear first order differential
equation

dĈi

dt
= −

k
∑

j Vi,jC
A
i,j

Vtot,i
= −

k
∑

j Vi,jĈi

Vin,i +
∑

j Vi,j
= −βiĈi,

(41)
with the initial condition given by (40). The solution of (41)
can be expressed as

Ĉi = αie
−βitCA,init

in,i . (42)

Thus, (42) provides an approximate solution for the temporal
dynamics of the joint compartment and, thus, also for all
CA

in,i and CA
i,j . Next, we consider the concentration of B-

type molecules in the intermediates, i.e., CB
i,j . Due to the

assumption that diffusion is very fast, each B-type molecule
in an intermediate (either B+ or B−) is instantly removed and
transferred to the respective outlet, from where it cannot return
due to the unidirectional transport. Thus, we can approximate
CB

i,j = 0 for all times t and intermediates (i, j). Since by
assumption (justified by the very fast diffusion) the reactive
flux Vi,jkĈi in the intermediate ends up immediately in the
respective outlet and one outlet receives multiple fluxes from
different intermediates (potentially with different sign si,j),

3Note that this equality only holds due to the assumptions above. In general,
at the beginning of a computation, the inlet-concentration will be higher than
the intermediate concentration (neglected due to the second assumption) and
it will always remain slightly higher throughout the computation (neglected
due to the first assumption).
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Fig. 9. Conversion from the conventional compartment structure to the joint
compartment. Inlet and intermediates are summarized in one homogeneous
compartment with the initial concentration proportional to the amount initially
placed in an inlet and efflux only occurs out of the intermediates.

we can formulate the differential equation of the concentration
difference in a given outlet as follows (see similar derivation
(37)):

dC∆B
out,j

dt
=

I∑
i=1

si,jk
Vi,j

V
Ĉi. (43)

The actual concentration in the outlet can be obtained by
substituting (42) into (43) and integrating both sides with
respect to t

C∆B
out,j =

I∑
i=1

si,jγi,jC
A,init
in,i

(
1− e−βit

)
, (44)

with γi,j =
Vi,jαik
βiV

=
χi,jVin,i

V . It is important to note that
calculating the steady state of (44) results in (15)

lim
t→∞

C∆B
out,j(t) =

I∑
i=1

si,jγi,jC
A,init
in,i

=
1

V

I∑
i=1

si,jχi,jVin,iC
A,init
in,i . (45)

The models presented in this section describes the temporal
dynamics of the systems, assuming that diffusion is much
faster than reactions. It is an approximate solution to (39) and
allows to derive an estimate for the time a computation takes,
which will be examined next.

2) Computation Time: From (44), we observe that the
solution is a superposition of multiple exponential functions
which decay over time. The exponent βi is a measure for
the speed of this decay. It can be shown that after the time
t = 5

βi
the value of this function will not change more than

1%. Hence, the expression

τ1,max = max
i,j

5

βi
=

5

k
max
i,j

(
Vin,i∑
j Vi,j

+ 1

)
(46)

is a measure for the time duration unless (almost) all molecules
have moved to the outlets (i.e., the inlets and intermediates
hold (almost) no signaling molecules after this time). Please

note that this time constant is based on a linear system of dif-
ferential equations, which we obtained by a choice of variables
(i.e., C∆B

out,j = CB+

out,j −CB+

out,j), that eliminated the non-linear
part of the system model stemming from the second order
equation4. Yet, when we want to obtain an estimate of the
overall computation time, we need to reconsider this nonlinear
part. Therefore, we make the conservative assumption, that the
reaction in the outlet starts only after the linear system has
reached steady state (i.e., after waiting for τ1). Since after his
time the concentration in the intermediates is (almost) zero,
we can rewrite (36) as

dCB+

out,j

dt
= −rCB+

out,jC
B−

out,j (47a)

dCB−

out,j

dt
= −rCB+

out,jC
B−

out,j , (47b)

and assume that CB+,init
out,j = C+

0 and CB−,init
out,j = C−

0 (we use

C+
0 and C−

0 instead of CB+,init
out,j and CB−,init

out,j to indicate the
respective variable after the linear dynamic has settled). By
integrating (47) on both sides with respect to t and equating
the right hand sides we obtain

CB+

out,j − C+
0 = CB−

out,j − C−
0 . (48)

Substituting ∆C = C+
0 − C−

0 and (48) into (47) we get5

dCB+

out,j

dt
= −r(CB+

out,j)
2 + r∆CCB+

out,j , (49)

which can be solved using the method of separation of
variables and the initial condition CB+

out,j = C+
0 . The solution

reads as
CB+

out,j =
∆C(

∆C
C+

0

− 1
)
e−r∆Ct + 1

, (50)

and can be verified by substituting into (49). The concentration
CB−

out,j can be obtained by subtracting ∆C from (50). From
(50) we notice that for ∆C > 0 the state of CB+

out,j tends
towards ∆C as time approaches infinity, since in this case
only B+ molecules remain (see (4)). If ∆C < 0, the state of
CB+

out,j approaches zero as time approaches infinity, since all
B+ type molecules are used up. Moreover, it can be observed
that the only time dependent expression is e−r∆Ct. Thus, we
can define a time constant which is a measure for the time a
computation needs to finish and is given by

τ2 ∝
1

r∆C
. (51)

As expected (since the system is non-linear), the time constant
depends on the input concentration. To get rid of ∆C, we
use the fact that the concentration can never become smaller
than one molecule per unit volume (i.e., there are no half

4Physically this means that we assume that we are able to measure B+,
B− and ∗ all at the same time. Under this assumption, once all molecules
have arrived in the outlet compartment their difference (i.e., the outcome) is
fixed and can be measure. If we are however only able to measure B+ and
B−, then we need to wait until the second order reaction has settled and only
one species has remained.

5The following derivations are valid for ∆C ̸= 0. For this special case,
the same condition can be obtained. The derivation will be omitted for the
sake of compactness.
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molecules). Thus, we set min∆C = 1
Vmax

and obtain the
estimate

τ2,max ∝
Vmax

r
. (52)

Finally, the overall computation time can be calculated as
follows:

τ =
5

k
max
i,j

(
Vin,i∑
j Vi,j

+ 1

)
+

Vmax

r
(53)

V. ADVANCED ANALYSIS AND DESIGN ALGORITHMS

So far, we have presented two types of models. The
stochastic model derived in Sec. III relates the initial inlet
concentration to the final outlet concentration (i.e., (16)), but
does not consider the temporal evolution of the states in
the compartments. Moreover, this model is only valid, if we
can assume that the reactions in all compartments are slow
compared to the diffusive processes. On the other hand, the
dynamical model derived in Sec. IV (cf. (39)) describes the
temporal dynamics of all states in the structure for all times
without any constraints. However, we have not yet established
a relation between initial inlet and final outlet concentration.
Thus, in this section, we will first derive this relation and
relate it to the expected value of the stochastic model derived
in Sec. III. We will show that the final states of the two
models converge towards each other under the assumption
that reaction is much slower than diffusion. If this assumption
is violated, the stochastic model becomes invalid and, thus,
the way of finding the volumes obtained by this model (i.e.,
(20)) becomes invalid as well. Thus, based on the dynamical
model (39), we will show how to derive the compartment
volumes in this case.

A. Steady State of the Dynamical Model
The goal of this subsection is to relate the initial inlet

concentration of the dynamical model (39) to its final outlet
concentration, which defines the matrix multiplication. There-
for, we use the final value theorem of the Laplace transform,
which reads as

C∆B,fin
out,j = lim

s→0
sL{C∆B

out,j} = lim
s→0

sC̃∆B
out,j(s), (54)

with s the Laplace variable and the tilde indicating that
a variable is in the Laplace domain. To obtain C̃∆B

out,j(s),
we transform (39) into the Laplace domain, resulting in the
following linear system of algebraic equations

sC̃A
in,i(s)− CA,init

in,i =
SD

LVi

−JC̃A
in,i(s) +

J∑
j=1

C̃A
i,j(s)


(55a)

sC̃A
i,j(s)− 0 =

SD

LVi,j

(
−C̃A

i,j(s) + C̃A
in,i(s)

)
−

kC̃A
i,j(s) (55b)

sC̃B
i,j(s)− 0 =kC̃A

i,j(s)−
DS

LVi,j
C̃B

i,j(s) (55c)

sC̃∆B
out,j(s) =

I∑
i=1

si,j
DS

LV
C̃B

i,j(s). (55d)

By solving this linear equation system with respect to
C̃∆B

out,j(s), we obtain

C̃∆B
out,j(s) =

1

s

SD

LV

I∑
i=1

si,jkSDCA,init
in,i

Qi,j
, (56)

with

Qi,j =

(
s+

SD

LVin,i

(
J −

J∑
k=1

SD

sLVi,j + SD + kLVi,j

))
×(

s+
SD

LVi,j

)
(sLVi,j + SD + kLVi,j) . (57)

Substituting this result into (54) results in

C∆B,fin
out,j =

1

V

I∑
i=1

si,jVin,iVi,jGi,j∑J
k=1 Vi,k, Gi,k

CA,init
in,i , (58)

with

Gi,j =
SD

SD + kLVi,j
. (59)

It is important to note that for Gi,j = 1, (58) corresponds to the
input-output relation derived in Sec. III (cf. (15)). From (59)
it can be seen that Gi,j = 1 holds if

max(Vi,j)kL≪ SD. (60)

This condition6 allows us to determine the range, where
the naive design algorithm for determining the compartment
volumes given in (20) is valid. In addition, (60) allows the
derivation of the scale, for which the proposed concept is
applicable. This can be seen by reformulating (60) that the
left hand side depends only on quantities defined by the scale,
while the right hand side only depends on the properties of
the involved substances

max(Vi,j)L

S
≪ D

k
. (61)

This relation states that increasing k lowers the upper bound
on the size of the structure. On the other hand, (46) states
that for larger k the computation gets faster. Combining these
two statements, we can conclude that the smaller the structure
gets7, the larger k can be chosen (while still fulfilling (60))
and the faster the computation will be. Another important
consequence is that for a given desired computation time,
the possible pool of chemicals (corresponding to the range of
reaction rates) increases with decreasing structure size. Thus,
the proposed structure is especially suitable for the micro-scale
and below. Please note however that the structure cannot be
shrinked arbitrarily far due to the increased computation noise
for smaller scales (see (21)).

6Please note that (60) is just the condition that the reaction time scale
τre = 1

k
is much larger than the maximum diffusion time τdif =

max(Vi,j)L

SD
,

which can be obtained simply by rearranging.
7A smaller structure means that a given structure is shrinked equally along

all axis (x, y, and z). Hence, the volume, channel area, and channel length
decrease with the third, second, and first power of the reduction factor,
respectively.
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B. Advanced Design Algorithm

In the previous subsection we derived a condition (i.e.,
(60)), under which the models derived in Sec. III are valid.
In this case, the naive design algorithm for determining the
compartment volumes given in (20) for arbitrary matrix entries
can be applied. It is recommended to design the architecture
in a way that (60) is fulfilled(note, how in (17) neither S nor
L plays a role. This allows for great geometrical flexibility
when building the structure). However, if (60) could be not
fulfilled, we give the reader an understanding of how to deal
with a violation of this condition in the following. Therefore,
we consider a simple example of cubic volumes connected
by cubic channels. To give the reader an outlook on future
challenges, we furthermore show, how to incorporate a side
condition, that is, the channel diameters should be smaller than
the volume diameter. Hence, the two conditions we would like
to simultaniously fulfill are:

• Main condition: Find the volumes of the structure such
that it realizes M taking into consideration k and D.

• Geometrical constraint: Make sure that the diameter of
all volumes is much larger than the channel diameter.

The algorithm to derive the compartment models can be
derived based on (58) and some geometrical considerations.
Without loss of generality, we will assume that all volumes
and channels are cube-shaped. We formulate the geometrical
constraint from above as

Vchannel = δ3 =
Vmin

κ
, (62)

where κ is a number much larger than one (typically we choose
κ = 1000), Vmin is the smallest volume in the structure, and δ
is the channel length, width and height. It follows immediately
that S = δ2 and L = δ. To enforce the main condition, we use
(58). We notice that C∆B,fin

out,j is a weighted sum over CA,init
in,i

and identify the matrix weight

Mj,i =
si,jVin,iVi,jGi,j∑J
k=1 V Vi,k, Gi,k

. (63)

Since the denominator for different j and similar i is the same,
we can get rid of the denominator by defining a ratio of the
weights

Mj,i

Mk,i
=

si,jVi,jGi,j

si,kVi,kGi,k
. (64)

Substituting the definition of Gi,j (see (59)) and si,j (from
(20c)) and then solving for Vi,k results in

Vi,k =
Vi,j

|Mk,i|
|Mj,i|

1 + rL
DSVi,j

(
1− |Mk,i|

|Mj,i|

) . (65)

Thus, if we know one intermediate volume Vi,j , we can
calculate all others from it. However, due to the negative
sign in the denominator, the volume can in general become
negative, which does not make sense from a physical point of
view. To avoid this problem, we set Vi,j = Vmax, where Vmax

is the largest intermediate volume in the structure. This volume
is a required input for the design algorithm. Since (65) can be
applied to each column of M , the first step in our algorithm
is to set the volume corresponding to the largest weight in

each column of M to Vmax. Then, we can calculate the other
intermediate volume of the structure by

Vi,k =
Vmax

|Mk,i|
max |Mj,i|

1 + rL
DSVmax

(
1− |Mk,i|

max |Mj,i|

) . (66)

It is important to note that now we will never get a negative
results, since we started by the largest weight and, thus,

Mk,i

max |Mj,i| < 1. If we would not need to consider the geo-
metrical constraint, we would be already done at this point.
To be able to enforce this condition, however, we need to
derive the smallest volume Vmin (cf. (62)). This can be again
obtained through (66), resulting in

Vmin =

Vmaxmin
i,k

|Mk,i|
max

j
|Mj,i|

1 + rL
DSVmax

(
1−min

i,k

|Mk,i|
max

j
|Mj,i|

) . (67)

Substituting into (62) gives

δ3 =
1

κ

Vmaxmin
i,k

|Mk,i|
max

j
|Mj,i|

1 + rδ
Dδ2Vmax

(
1−min

i,k

|Mk,i|
max

j
|Mj,i|

) . (68)

When solving this equation, we end up with an expression of
the form

δ3 + aδ2 − b = 0 (69)

with a > 0 and b > 0. Since b > 0 the expression on the left
hand side is less than zero for δ = 0. Thus, there is always
at least one positive solution for δ (in fact, it can be shown
by the rule of Descartes [15], that there is exactly one such
solution). Finally, we have to choose the dimensions of the
inlet and outlet compartments. As we see from (58), we again
only care about the ratio of the two, thus they can be always
chosen in a way such that they satisfy the above conditions.
Note that at this point all Vi,j and Gi,j are known. Thus, we
can get the ratio of Vin,i and V from (63) as

θi =
Vin,i

V
= Mj,i

∑J
k=1 Vi,k, Gi,k

si,jVi,jGi,j
, (70)

where we only need to choose one pair of indices (j, i) for
each column of M . After having computed the fraction for
all columns, we know the smallest θi. If it is larger than 1, we
set the V to a value V0 ≥ Vmin and calculate all Vin,i from
V using (70). Otherwise, we set the Vin,i to the V0, calculate
V from it using (70) and use the obtained V to calculate
all other Vin,i again from (70). This way, all inlet and outlet
volumes are definitely larger than the smallest intermediate
and thus the overall solution will satisfy the geometrical
constraint. The pseudo-code shown in Alg. 1 summarizes the
algorithm for determining the compartment volumes discussed
above, referring to as Advanced Design Algorithm. Please note
that we made the choice, that the smallest of inlet or outlet
compartments should be Vmin. Other choices would of course
be also possible.
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Algorithm 1 Advanced Design Algorithm
Input: k, D, Vmax, M , κ
Output: List of Volumes

Initialization :
1: for i in columns of M do
2: k ← argmax

j
Mj,i

3: Set Vi,k ← Vmax

4: end for
5: Calculate δ solving (68)
6: S ← δ2

7: L← δ
8: for j in rows of M and i in columns of M do
9: Compute Vi,j from (65)

10: end for
11: θ ← min

i

Vin,i

V = Mj,i

∑J
k=1 Vi,k,Gi,k

si,jVi,jGi,j

12: if θ > 1 then
13: Set V ← Vmin

14: else
15: Calculate V ← Vmin

θ
16: end if
17: for i in columns of M do
18: Vin,i = θiV with θi obtained from the r.h.s. from (70)
19: end for
20: return All Vin,i, Vi,j and V

VI. SIMULATION RESULTS

In this section, we validate the functionality and the mathe-
matical models of the proposed matrix multiplication structure
using a microscopic-mesoscopic hybrid simulation (MMS).
We study a matrix multiplication with a 3 × 2 matrix8 and
consider two scenarios, one fulfilling and one violating the
condition given in (60).

A. Parameters and Simulation Scenarios

We consider the multiplication of a two-dimensional input
vector C in with a 3 × 2 matrix M , resulting in a three-
dimensional output vector Cout. The weights of the matrix
were generated randomly (in the range [−5, 5] rounded to
one decimal place) and the matrix we used for the following
studies is given by

M =

−3.5 3.7
−0.8 −2.0
−4.4 2.4

 . (71)

Similar, the values of the input vectors were generated ran-
domly (in the range [0, 2]). For our studies we used two
different vectors, which are given by

C
(1)
in =

[
0.6 0.4

]T × 1021
molecules

m3
(72)

and

C
(2)
in =

[
1.1 0.2

]T × 1021
molecules

m3
. (73)

8Other matrix dimensions will lead to similar conclusions, but omitted here
due to the lack of space.

TABLE I
PARAMETER FOR TWO SIMULATION SCENARIOS

Parameter Value (scenario 1) Value (scenario 2)

k 1 1
s

20 1
s

D 10−8 m2

s
10−9 m2

s

TABLE II
DIMENSIONS OF THE STRUCTURE DETERMINED BY THE NAIVE AND

ADVANCED DESIGN ALGORITHM

Parameter Value (naive design) Value (advanced design)

L 0.1 µm 0.076 µm
S 0.01 µm2 0.0058 µm2

V 1 µm3 0.44 µm3

V1,1 3.5 µm3 3.13 µm3

V1,2 0.8 µm3 0.44 µm3

V1,3 4.4 µm3 5 µm3

V2,1 3.7 µm3 5 µm3

V2,2 2 µm3 1.68 µm3

V2,3 2.4 µm3 2.22 µm3

Vin,1 8.7 µm3 3.81 µm3

Vin,2 8.1 µm3 3.54 µm3

We expect the following concentration in the outlets as the
result of the matrix multiplication

C
(1)
out = MC

(1)
in

=
[
3.08 −3.28 0.72

]T × 1021
molecules

m3
(74)

and

C
(2)
out = MC

(2)
in

=
[
−3.11 −1.28 −4.36

]T × 1021
molecules

m3
. (75)

For our studies we consider two different scenarios. The
parameters (r and D) for the first and second scenario were
chosen such that the condition given in (60) is fulfilled or
violated (cf. Tab. I). In the first scenario, the naive design
algorithm for calculating the volumes defined by (20) can
be applied and the resulting dimensions are summarized in
Tab. II. In the second scenario, the condition (60) was inten-
tionally violated, which will show the effect of such a violation
on the naive design algorithm. It is important to note that the
naive design algorithm does not utilize k or D, so it will still
yield the same dimensions as in the first scenario. However, the
advanced design algorithm given in Alg. 1 takes those values
into account and the resulting volumes with Vmax = 5 µm3

and κ = 1000 are summarized in Tab. II.

B. Simulation Environment
For the MMS we used the AcCoRD simulator presented

in [16]. For convenience of implementation, all volumes and
connecting channels were chosen of cubic shape. The length,
height, and width of each compartment was chosen such that
the volume had the value specified in Tab. II. Channel length
and width are presented in the same table. With the micro-
scopic simulation method the movement of the individual
molecules can be simulated, which is referred to as particle-
based simulation (PBS). This simulation method updates the
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ri
ri−1

Fig. 10. Comparison of actual molecule trajectory and linear interpolation.

molecule position at each time step, by adding a Gaussian
random variable [17]. It is important to note that it only gives
a straight-line interpolation between the molecule position at
the beginning and end of the time step instead of the actual
molecule trajectory. Thus, it may happen that a straight-line
interpolation leads to a reflection, while in reality, the molecule
propagates from one compartment to another, as illustrated in
Fig. 10. To overcome this problem the time step ∆t needs to
be set very small. As a rule of thumb, the root mean square
distance covered in a time step (cf. Appendix A) should be
much smaller than the smallest dimension of a structure [16].
For the parameter scenario 1 this condition reads

√
2D∆t≪ L

∆t≪ 5× 10−7 s,
(76)

since the smallest dimension is given by the channel length.
Satisfying (76) is challenging, as the necessity for extremely
small time steps makes simulations impractical due to the
increased computational effort. Thus, a different approach
must be used for the channels, while the compartments can
be simulated with the microscopic simulation method, as they
are considerably larger than the channel. Our chosen approach
involves simulating the channels of the structure using the
mesoscopic simulation method, which allows for an accu-
rate simulation of the transition between two compartments.
This is because, for microscopic-mesoscopic interfaces, the
probability that a molecule may have entered the mesoscopic
region (i.e., channel) during a time step is taken into account.
Consequently, provided a molecule is outside the channel at
the end of the time step, it can be manually placed in the
channel based on this probability. However, it is important
to note that the mesoscopic simulation method no longer
simulates each molecule individually but only the number of
molecules per subvolume9. Nevertheless, this method provides
accurate results as long as the subvolumes are small, which
is fulfilled for the channels. However, it is not possible to
simulate the entire channel in the mesoscopic region since the
AcCoRD simulator does not support the correct functionality
of membranes, required for unidirectional transport, at meso-
scopic interfaces. Thus, membranes must be placed adjacent

9The details of this simulation method can be found in [16].

Channel Connecting
Intermediate With Outlet

Channel Connecting
Inlet With Intermediate

Lc

Vin,1 V1,1

V1,2

V1,3 Vout,1

Vout,2

Vout,3

Channel Connecting
Intermediate With Outlet

Channel Connecting
Inlet With Intermediate

Lc

Vin,1 V1,1

V1,2

V1,3 Vout,1

Vout,2

Vout,3

Channel Connecting
Intermediate With Outlet

Channel Connecting
Inlet With Intermediate
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Vin,1 V1,1

V1,2

V1,3 Vout,1

Vout,2

Vout,3

Fig. 11. Two-dimensional view of the AcCoRD simulation setup for one inlet
compartment.

to microscopic regions. Fig. 11 illustrates the two-dimensional
view of the simulation setup for one inlet, considering the
naive design algorithm10. The blue and red colored regions are
simulated using the microscopic and mesoscopic simulation
method, respectively. Moreover, membranes are represented
by black lines. For the microscopic simulations, a time step
of ∆t = 10−6 s and ∆t = 10−7 s is used for scenario 1 and 2,
respectively. Due to the longer simulation duration required for
scenario 1, caused by the slower reaction rate k, the time step
is chosen larger to obtain a reasonable computational effort.

C. Results of Scenario 1

The simulation parameters for scenario 1 can be found in
Tabs. I and II. The simulations were carried out as long as
necessary, i.e., until the computation time defined in (46) was
reached11. For the used simulation parameters the computation
time is given by

τ1,max =
5

k
max
i,j

(
Vin,i∑
j Vi,j

+ 1

)
= 10 s. (77)

During the simulation the concentration C
(i)
out in each outlet

was recorded. The results for the dynamical model (cf. (39))
were obtained numerically using Matlab. In Fig. 12 the com-
parison of the MMS and the dynamic model is shown, while
Fig. 13 presents the comparison of the approximate (cf. (44))
and dynamic model. In both figures, the results for the first and
second input vector are marked in blue and red, respectively.
The comparison in Fig. 12 reveals a good agreement between
the MMS and the results of the dynamic model. Moreover,
Fig. 13 demonstrates that the dynamical and approximate
model match very well, since in this scenario the condition
in (60) is fulfilled. Finally, we observe that the simulation and
model results converge towards the desired outcome calculated
in (74) and (75), which validates the matrix multiplication
given in (5).

10Please note that due to the statistical independence of the concentrations
in the outlet stemming from different inlets, each inlet can be simulated
individually.

11Since it is assumed that the reaction (4) occurs instantaneously, τ2 must
not be added to the total computation time.
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Fig. 12. Simulation results for scenario 1: Comparison of MMS and dynamic
model.

D. Results of Scenario 2

The simulation parameters for scenario 2 are summarized
in Tabs. I and II and were chosen that the condition in (60)
is violated. Thus, we expect that the volumes obtained by the
naive design algorithm will lead to an insufficient performance,
which justifies the utilization of the advanced design algorithm
given in Alg. 1. The MMS and the results for the dynamical
model were obtained in a similar way as for scenario 1. Fig. 14
shows the concentration in the three outlets for the first input
vector C(1)

in . We observe a very good match between the MMS
and the results of the dynamical model. Moreover, we notice
that with the advanced design algorithm the results converge
towards the desired outcome given in (74), while the naive
design algorithms do not converge. Thus, the advanced design
algorithm is able to eliminate the influence of the violation
of the condition in (60), which shows its importance for this
scenario.

VII. CONCLUSION OUTLOOK

In this paper, we proposed a novel reaction-diffusion-based
compartment architecture that is capable of carrying out matrix
multiplications in the micro and nano-domain. The architecture
is capable of realizing arbitrary matrices with both positive
and negative weights, which can be set independently through
adjusting the volumes of the compartments. We derived a
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(2)
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Desired outcome (76) (C
(2)
in )

Fig. 13. Simulation results for scenario 1: Comparison of approximate and
dynamic model.

stochastic model and an approximate dynamical model that
shows the steady state and temporal behavior of the system,
assuming slow reaction and fast diffusion. The approximate
model was further used to estimate the computation speed
of the structure. Then we presented a differential equation
model which fully characterizes the dynamic behavior of
the system, without any constraints (i.e., reaction and dif-
fusion may operate on the same time scale). Based on the
aforementioned models we defined two design algorithms for
the compartment volumes given arbitrary matrix entries. We
validated the functionality of the proposed architecture and
the proposed models by a microscopic-mesoscopic hybrid
simulation. The presented structure and the design algorithms
can be adapted to form neural networks and, thus, enable
micro/nano-scale artificially engineered neural networks. This,
along with a practical realization of the proposed concept is
the scope of future research.
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APPENDIX A
CONDITION FOR HOMOGENEOUS CONCENTRATION

DISTRIBUTION WITHIN COMPARTMENTS

In this section, we justify the use of a compartment model
to describe the physical behavior of proposed the architecture.
The underlying assumption for the utilization of compartment
models is, that the concentration within one compartment is
uniform, and thus, we only need one state variable to define the
concentration in the compartment. In order to ensure this con-
dition we consider the one-dimensional diffusion equation [8]

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, (78)

which has the following solution in the unbounded space

c(x, t) =
K√
4πDt

e−
x2

4Dt . (79)

If we interpret this result as the probability of observing a
molecule (K = 1) at location x and choose the origin of our
coordinate system in the center of a compartment, we notice
that the variance of this distribution is 2Dt. Thus, the time
until a molecules has been displaced by a distance d is

√
2Dt.

In the case of a compartment, we do have boundary conditions
in some areas (i.e., the molecules can leave the compartments
only through the channels and not the walls). Nevertheless,
the influence of the boundaries will become visible, after the
molecules has diffused from the center to the boundaries, for
which reason, we define

τcomp =
a2

2D
, (80)

as a measure for the time it takes for a molecule to diffuse
through the compartment. Thereby a indicates the largest
diameter of a compartment. On the other hand, the rate at
which molecules are entering from the other compartments
for two interconnected compartments can be obtained from
(27) as

τchan =
V L

DS
. (81)

If τcomp ≪ τchan, we conclude that molecules have sufficient
time to spread through a compartment before new molecules
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arrive in the compartment. Hence, uniform concentration in a
compartment can be ensured by the following condition

a2

2
≪ LVmin

S
. (82)

Note, that this condition is of purely geometrical nature, which
means it can be fulfilled by designing the shape of the structure
accordingly.
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